机器学习入门

一、定义

使用算法解析数据,从中学习,然后对世界上的某件事情做出决定或预测

机器学习是人工智能的一个分支。人工智能致力于创造出比人类更能完成复杂任务的机器。这些任务通常涉及判断、策略和认知推理,这些技能最初被认为是机器的“禁区”。虽然这听起来很简单,但这些技能的范围非常大——语言处理、图像识别、规划等等。

二、分类

1、监督学习

监督学习涉及一组标记数据。计算机可以使用特定的模式来识别每种标记类型的新样本。监督学习的两种主要类型是分类和回归。在分类中,机器被训练成将一个组划分为特定的类。分类的一个简单例子是电子邮件帐户上的垃圾邮件过滤器。过滤器分析你以前标记为垃圾邮件的电子邮件,并将它们与新邮件进行比较。如果它们匹配一定的百分比,这些新邮件将被标记为垃圾邮件并发送到适当的文件夹。那些比较不相似的电子邮件被归类为正常邮件并发送到你的邮箱。
第二种监督学习是回归。在回归中,机器使用先前的(标记的)数据来预测未来。天气应用是回归的好例子。使用气象事件的历史数据(即平均气温、湿度和降水量),你的手机天气应用程序可以查看当前天气,并在未来的时间内对天气进行预测。

2、非监督学习

在无监督学习中,数据是无标签的。由于大多数真实世界的数据都没有标签,这些算法特别有用。无监督学习分为聚类和降维。聚类用于根据属性和行为对象进行分组。这与分类不同,因为这些组不是你提供的。聚类的一个例子是将一个组划分成不同的子组(例如,基于年龄和婚姻状况),然后应用到有针对性的营销方案中。降维通过找到共同点来减少数据集的变量。大多数大数据可视化使用降维来识别趋势和规则。

3、强化学习

强化学习使用机器的个人历史和经验来做出决定。强化学习的经典应用是玩游戏。与监督和非监督学习不同,强化学习不涉及提供“正确的”答案或输出。相反,它只关注性能。这反映了人类是如何根据积极和消极的结果学习的。很快就学会了不要重复这一动作。同样的道理,一台下棋的电脑可以学会不把它的国王移到对手的棋子可以进入的空间。然后,国际象棋的这一基本教训就可以被扩展和推断出来,直到机器能够打(并最终击败)人类顶级玩家为止。